NH4+ Pre‐Intercalation and Mo Doping VS2 to Regulate Nanostructure and Electronic Properties for High Efficiency Sodium Storage

Author:

Li Enzhi1,Wang Mingshan1ORCID,Hu Xi1,Huang Siming1,Yang Zhenliang2,Chen Junchen1,Yu Bo1,Guo Bingshu1,Ma Zhiyuan1,Huang Yun1,Cao Guozhong3ORCID,Li Xing1ORCID

Affiliation:

1. School of New Energy and Materials Southwest Petroleum University Chengdu Sichuan 610500 P. R. China

2. Institute of Materials China Academy of Engineering Physics Mianyang Sichuan 621908 P. R. China

3. Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA

Abstract

AbstractSodium‐ion hybrid capacitors (SIHCs) have attracted much attention due to integrating the high energy density of battery and high out power of supercapacitors. However, rapid Na+ diffusion kinetics in cathode is counterbalanced with sluggish anode, hindering the further advancement and commercialization of SIHCs. Here, aiming at conversion‐type metal sulfide anode, taking typical VS2 as an example, a comprehensive regulation of nanostructure and electronic properties through NH4+ pre‐intercalation and Mo‐doping VS2 (Mo‐NVS2) is reported. It is demonstrated that NH4+ pre‐intercalation can enlarge the interplanar spacing and Mo‐doping can induce interlayer defects and sulfur vacancies that are favorable to construct new ion transport channels, thus resulting in significantly enhanced Na+ diffusion kinetics and pseudocapacitance. Density functional theory calculations further reveal that the introduction of NH4+ and Mo‐doping enhances the electronic conductivity, lowers the diffusion energy barrier of Na+, and produces stronger d‐p hybridization to promote conversion kinetics of Na+ intercalation intermediates. Consequently, Mo‐NVS2 delivers a record‐high reversible capacity of 453 mAh g−1 at 3 A g−1 and an ultra‐stable cycle life of over 20 000 cycles. The assembled SIHCs achieve impressive energy density/power density of 98 Wh kg−1/11.84 kW kg−1, ultralong cycling life of over 15000 cycles, and very low self‐discharge rate (0.84 mV h−1).

Funder

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3