Zero Voltage‐Degradation of Li2MnO3 with Ultrathin Amorphous Li─Mn─O Coating

Author:

Liu Shiqi12,Wan Jie12,Wang Boya12,Li Chenghan12,Wang Yulong12,Wang Lin12,Wu Haipeng12,Zhang Nian3,Zhang Xu12,Yu Haijun12ORCID

Affiliation:

1. Institute of Advanced Battery Materials and Devices College of Materials Science and Engineering Beijing University of Technology Beijing 100124 P. R. China

2. Key Laboratory of Advanced Functional Materials Ministry of Education Beijing University of Technology Beijing 100124 P. R. China

3. State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P. R. China

Abstract

AbstractManganese‐based lithium‐rich layered oxides (Mn‐LLOs) are promising candidate cathode materials for lithium‐ion batteries, however, the severe voltage decay during cycling is the most concern for their practical applications. Herein, an Mn‐based composite nanostructure constructed Li2MnO3 (LMO@Li2MnO3) is developed via an ultrathin amorphous functional oxide LixMnOy coating at the grain surface. Due to the thin and universal LMO amorphous surface layer etched from the lithiation process by the high‐concentration alkaline solution, the structural and interfacial stability of Li2MnO3 are enhanced apparently, showing the significantly improved voltage maintenance, cycle stability, and energy density. In particular, the LMO@Li2MnO3 cathode exhibits zero voltage decay over 200 cycles. Combining with ex situ spectroscopic and microscopic techniques, the Mn2+/4+ coexisted behavior of the amorphous LMO is revealed, which enables the stable electrochemistry of Li2MnO3. This work provides new possible routes for suppressing the voltage decay of Mn‐LLOs by modifying with the composite functional unit construction.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3