The Origin of Thermal Gradient‐Induced Voltage in Polyelectrolytes

Author:

Sultana Ayesha1ORCID,Würger Alois2ORCID,Khan Ziyauddin1ORCID,Liao Mingna13ORCID,Jonsson Magnus P.13ORCID,Crispin Reverant13ORCID,Zhao Dan1ORCID

Affiliation:

1. Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE‐601 74 Sweden

2. University of Bordeaux & CNRS LOMA (UMR 5798) Talence F‐33405 France

3. Wallenberg Wood Science Center Linköping University Norrköping SE‐601 74 Sweden

Abstract

AbstractIonic thermoelectric materials can generate large thermal voltages under temperature gradients while also being low‐cost and environmentally friendly. Many electrolytes with large Seebeck coefficients are reported in recent years, however, the mechanism of the thermal voltage is remained elusive. In this work, three types of polyelectrolytes are studied with different cations and identified a significant contribution to their thermal voltage originating from a concentration gradient. This conclusion is based on studies of the loss and gain of water upon temperature changes, variations in conductivity with water content and temperature, and the voltages induced by changes in water content. The results are analyzed by the “hopping mode” dynamics of charge transport in electrolytes. The hydration of different cations influences the water concentration gradient, which affects the barrier height and ion‐induced potential in the electrodes. This work shows that the hydro‐voltage in ionic thermoelectric devices can be one order of magnitude larger than the contribution from thermodiffusion‐induced potentials, and becomes the main contributor to energy harvesting when implemented into ionic thermoelectric supercapacitors. Together with the rationalized theoretical discussion, this work clarifies the mechanism of thermal voltages in electrolytes and provides a new path for the development of ionic thermoelectric materials.

Funder

Vetenskapsrådet

Stiftelsen Åforsk

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3