Colossal Orbital Current Induced by Gradient Oxidation for High‐Efficiency Magnetization Switching

Author:

Xu Xinkai12,Zhang Dainan2,Liao Zhimin3,Yan Peng2,Wang Yixin12,Zhang Lei12,Zhong Zhiyong12,Bai Feiming12,Qu Yuanjing2,Zhang Huaiwu12,Jin Lichuan12ORCID

Affiliation:

1. School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China

2. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China

3. State key Laboratory of Artificial Microstructure and Mesoscopic Physics School of Physics Peking University Beijing 100871 P. R. China

Abstract

AbstractOrbital angular momentum flow can be used to develop a low‐dissipation electronic information device by manipulating the orbital current. However, efficiently generating and fully harnessing orbital currents is a formidable challenge. In this study, an approach is presented that induces a colossal orbital current by gradient oxidation in Pt/Ta to enhance spin‐orbit torque (SOT) and achieve high‐efficiency magnetization switching. The maximum efficiency of the SOT before and after the gradient oxidation of Ta is improved relative to that of Pt by ≈600 and 1200%, respectively. The large SOT originates from the colossal orbital current because of the orbital Rashba–Edelstein effect induced by the gradient oxidation of Ta. In addition, a large spin‐to‐charge conversion efficiency is observed in yttrium iron garnet/Pt/TaOx because of the inverse orbital Rashba–Edelstein effect. Harnessing the orbital current can help effectively minimize the critical current density of the current‐induced magnetization switching to 2.26–1.08 × 106 A cm−2, marking a 12‐fold reduction compared to that using Pt. This findings provide a new path for research on low‐dissipation spin‐orbit devices and improve the tunability of orbital current generation.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3