High Electrical Conductivity and Hole Transport in an Insightfully Engineered Columnar Liquid Crystal for Solution‐Processable Nanoelectronics

Author:

De Ritobrata1ORCID,Maity Madhusudan1,Joseph Alvin2,Gupta Santosh Prasad3,Nailwal Yogendra1,Namboothiry Manoj A. G.2,Pal Santanu Kumar1ORCID

Affiliation:

1. Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge city, Sector 81 SAS Nagar Punjab 140306 India

2. School of Physics Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala 695551 India

3. Department of Physics Patna University Patna 800005 India

Abstract

AbstractDiscotic liquid crystals (DLCs) are widely acknowledged as a class of organic semiconductors that can harmonize charge carrier mobility and device processability through supramolecular self‐assembly. In spite of circumventing such a major challenge in fabricating low‐cost charge transport layers, DLC‐based hole transport layers (HTLs) have remained elusive in modern organo‐electronics. In this work, a minimalistic design strategy is envisioned to effectuate a cyanovinylene‐integrated pyrene‐based discotic liquid crystal (PY‐DLC) with a room‐temperature columnar hexagonal mesophase and narrow bandgap for efficient semiconducting behavior. Adequately combined photophysical, electrochemical, and theoretical studies investigate the structure‐property relations, logically correlating them with efficient hole transport. With a low reorganization energy of 0.2 eV, PY‐DLC exhibits superior charge extraction ability from the contact electrodes at low values of applied voltage, achieving an electrical conductivity of 3.22 × 10−4 S m−1, the highest reported value for any pristine DLC film in a vertical charge transport device. The columnar self‐assembly, in conjunction with solution‐processable self‐healed films, results in commendably elevated values of hole mobility (≈10−3 cm2 V‐1s−1). This study provides an unprecedented constructive outlook toward the development of DLC semiconductors as practical HTLs in organic electronics.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3