Affiliation:
1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
2. Advanced Technology Research Institute Beijing Institute of Technology Jinan 250300 China
3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China
Abstract
AbstractWith ever‐increasing requirements for cathodes in the lithium‐ion batteries market, an efficiency and eco‐friendly upcycling regeneration strategy is imperative to meet the demand for high‐performance cathode materials. Herein, a facile, direct and upcycling regeneration strategy is proposed to restore the failed LiCoO2 and enhance the stability at 4.6 V. Double effects combination of relithiation and outside surface reconstruction are simultaneously achieved via a facile solid‐phase sintering method. The evolution process of the Li‐supplement and grain‐recrystallization is systematically investigated, and the high performance of the upcycled materials at high voltage is comprehensively demonstrated. Thanks to the favorable spinel LiCoxMn2−xO4 surface coating, the upcycled sample displays outstanding electrochemical performance, superior to the pristine cathode materials. Notably, the 1% surface‐coated LiCoO2 achieves a high discharge‐specific capacity of 207.9 mA h g−1 at 0.1 C and delivers excellent cyclability with 77.0% capacity retention after 300 cycles. Significantly, this in situ created spinel coating layer can be potentially utilized for recycling spent LiCoO2, thus providing a viable, promising recycling strategy insights into the upcycling of degraded cathodes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Natural Science Foundation of Beijing Municipality
National Key Research and Development Program of China