Interfacial Modulation of Ti3C2Tx MXene by Cellulose Nanofibrils to Construct Hybrid Fibers with High Volumetric Specific Capacitance

Author:

Liang Qidi1,Liu Kun1,Xu Ting1,Wang Yaxuan1,Zhang Meng1,Zhao Qingshuang1,Zhong Weiren2,Cai Xu‐Min2,Zhao Zujin3,Si Chuanling1ORCID

Affiliation:

1. Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin 300457 China

2. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Rescources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China

3. State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China

Abstract

AbstractThe intrinsic poor rheological properties of MXene inks result in the MXene nanosheets in dried MXene microfibers prone to self‐stacking, which is not conducive to ion transport and diffusion, thus affecting the electrochemical performance of fiber‐based supercapacitors. Herein, robust cellulose nanofibrils (CNF)/MXene hybrid fibers with high electrical conductivity (916.0 S cm−1) and narrowly distributed mesopores are developed by wet spinning. The interfacial interaction between CNF and MXene can be enhanced by hydrogen bonding and electrostatic interaction due to their rich surface functional groups. The interfacial modulation of MXene by CNF can not only regulate the rheology of MXene spinning dispersion, but also enhance the mechanical strength. Furthermore, the interlayer distance and self‐stacking effect of MXene nanosheets are also regulated. Thus, the ion transport path within the fiber material is optimized and ion transport is accelerated. In H2SO4 electrolyte, a volumetric specific capacitance of up to 1457.0 F cm−3 (1.5 A cm−3) and reversible charge/discharge stability are demonstrated. Intriguingly, the assembled supercapacitors exhibit a high‐volume energy density of 30.1 mWh cm−3 at 40.0 mW cm−3. Moreover, the device shows excellent flexibility and cycling stability, maintaining 83% of its initial capacitance after 10 000 charge/discharge cycles. Practical energy supply applications (Power for LED and electronic watch) can be realized.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3