A Laser‐Induced Mo2CTx MXene Hybrid Anode for High‐Performance Li‐Ion Batteries

Author:

Bayhan Zahra12ORCID,El‐Demellawi Jehad K.13ORCID,Yin Jian1ORCID,Khan Yusuf1ORCID,Lei Yongjiu1ORCID,Alhajji Eman1ORCID,Wang Qingxiao4,Hedhili Mohamed N.4ORCID,Alshareef Husam N.1ORCID

Affiliation:

1. Materials Science and Engineering Physical Science and Engineering (PSE) Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

2. Department of Physics College of Science Princess Nourah bint Abdulrahman University (PNU) Riyadh 11671 Saudi Arabia

3. KAUST Upstream Research Center (KURC) EXPEC Advanced Research Center (ARC) Saudi Aramco Thuwal 23955‐6900 Saudi Arabia

4. Core Labs King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

Abstract

AbstractMXenes, a fast‐growing family of two‐dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li‐ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser‐induced Mo2CTx/Mo2C (LS‐Mo2CTx) hybrid anode has been developed, of which the Mo2C nanodots boost redox kinetics, and the laser‐reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser‐induced Mo2C nanodots and Mo2CTx nanosheets enhance conductivity and stabilize the structure during charge–discharge cycling. The as‐prepared LS‐Mo2CTx anode exhibits an enhanced capacity of 340 mAh g−1 vs 83 mAh g−1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser‐induced synthesis approach underlines the potential of MXene‐based hybrid materials for high‐performance energy storage applications.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3