3D Confinement Stabilizes the Metastable Amorphous State of Antimony Nanoparticles – A New Material for Miniaturized Phase Change Memories?

Author:

Frommelius Anne1ORCID,Wirth Konstantin2ORCID,Ohlerth Thorsten1ORCID,Siebenkotten Dario2ORCID,Wintersteller Simon3ORCID,Abouserie Ahed1ORCID,Du Hongchu4ORCID,Mayer Joachim4ORCID,Yarema Maksym3ORCID,Taubner Thomas2ORCID,Simon Ulrich1ORCID

Affiliation:

1. Institute for Inorganic Chemistry RWTH Aachen University 52074 Aachen Germany

2. Institute of Experimental Physics RWTH Aachen University 52074 Aachen Germany

3. Institute for Electronics ETH Zürich Zürich 8092 Switzerland

4. Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons Forschungszentrum Jülich GmbH Central Facility for Electron Microscopy RWTH Aachen University and JARA – Fundamentals of Future Information Technologies 52425 Jülich Germany

Abstract

AbstractThe wet‐chemical synthesis of 3D confined antimony nanoparticles (Sb‐NP) at low and high temperatures is described. Using reaction conditions that are mild in temperature and strong in reducing power allows the synthesis of amorphous Sb‐NP stabilized with organic ligands. Exchanging the organic ligand 1‐octanethiol by iodide enabled to investigate the unusual strong stability of this metastable material through simultaneous thermal analysis combining differential scanning calorimetry and thermogravimetric analysis. Additionally, in situ high temperature powder x‐ray diffraction (p‐XRD) shows a significant increase in stabilization of the amorphous phase in comparison to thin layered, 1D confined Sb or bulk material. Further, it is shown with scattering‐type scanning near‐field optical microscopy (s‐SNOM) experiments that the optical response of the different phases in Sb‐NP make the distinctness of each phase possible. It is proposed that the Sb‐NP introduced here can serve as a 3D‐confined optically addressable nanomaterial of miniaturized phase change memory devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3