Affiliation:
1. School of Materials Science and Engineering Nanyang Technological University 11 Faculty Ave Singapore 639977 Singapore
2. Energy Research Institute at Nanyang Technological University Research Techno Plaza 50 Singapore, Nanyang Drive Singapore 637553 Singapore
3. Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
Abstract
AbstractRechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long‐term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co‐solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g−1and an excellent energy density of 730 Wh kg−1at 0.1 Ag−1. In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag−1. Moreover, the cathode charge–discharge mechanism studies demonstrate a multi‐step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2−(, forming ZnS. On charging, the ZnS and short‐chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi‐step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.
Funder
National Research Foundation Singapore
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献