Engineering Single Cu Sites into Covalent Organic Framework for Selective Photocatalytic CO2 Reduction

Author:

Zhang Yize1,Cao Lili1,Bai Guoyi1,Lan Xingwang1ORCID

Affiliation:

1. Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science Hebei University Baoding Hebei 071002 P. R. China

Abstract

AbstractPhotocatalytic CO2 conversion into value‐added chemicals is a promising route but remains challenging due to poor product selectivity. Covalent organic frameworks (COFs) as an emerging class of porous materials are considered as promising candidates for photocatalysis. Incorporating metallic sites into COF is a successful strategy to realize high photocatalytic activities. Herein, 2,2′‐bipyridine‐based COF bearing non‐noble single Cu sites is fabricated by chelating coordination of dipyridyl units for photocatalytic CO2 reduction. The coordinated single Cu sites not only significantly enhance light harvesting and accelerate electron–hole separation but also provide adsorption and activation sites for CO2 molecules. As a proof of concept, the Cu‐Bpy‐COF as a representative catalyst exhibits superior photocatalytic activity for reducing CO2 to CO and CH4 without photosensitizer, and impressively, the product selectivity of CO and CH4 can be readily modulated only by changing reaction media. Experimental and theoretical results reveal the crucial role of single Cu sites in promoting photoinduced charge separation and solvent effect in regulating product selectivity, which provides an important sight onto the design of COF photocatalysts for selective CO2 photoreduction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3