Flexible Nanogenerators Based on Enhanced Flexoelectricity in Mn3O4 Membranes

Author:

Chowde Gowda Chinmayee1ORCID,Cavin John2,Kumbhakar Partha34,Tiwary Chandra Sekhar13,Mishra Rohan25ORCID

Affiliation:

1. School of Nano Science and Technology Indian Institute of Technology Kharagpur West Bengal 721302 India

2. Department of Physics Washington University in St. Louis St. Louis MO 63130 USA

3. Metallurgical and Materials Engineering Indian Institute of Technology Kharagpur West Bengal 721302 India

4. Department of Physics and Electronics Christ University Bangalore Karnataka 560029 India

5. Department of Mechanical Engineering & Materials Science and Institute of Materials Science & Engineering Washington University in St. Louis St. Louis MO 63130 USA

Abstract

AbstractAtomically thin, few‐layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high‐performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best‐performing device showing a power density of 7.99 mW m−2 compared to 1.04 µW m−2 in bulk Mn3O4. A sensitivity of 108 mV kPa−1 for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first‐principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4 are found to be 50–100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof‐of‐concept, flexible NGs using exfoliated Mn3O4 membranes are made and used in self‐powered paper‐based devices. This research paves the way for the exploration of few‐layered membranes of other centrosymmetric oxides for application as energy harvesters.

Funder

Asian Office of Aerospace Research and Development

National Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3