Multifunctionality of Additively Manufactured Kelvin Foam for Electromagnetic Wave Absorption and Load Bearing

Author:

Lee Jeongwoo1,Lim Dahyun Daniel2,Park Jinwoo3,Lee Jaemin1,Noh Dowon1,Gu Grace X.2,Choi Wonjoon1ORCID

Affiliation:

1. School of Mechanical Engineering Korea University 02841 Seoul Republic of Korea

2. Department of Mechanical Engineering University of California Berkeley Berkeley CA 94720 USA

3. Department of Materials and Energy Centre Agency for Defense Development Yuseong P. O. Box 35 Daejeon 34060 Republic of Korea

Abstract

AbstractRationally engineered porous structures enable lightweight broadband electromagnetic (EM) wave absorbers for countering radar signals or mitigating EM interference between multiple components. However, the scalability of such structures has been hindered by their limited mechanical properties resulting from low density. Herein, an additively manufactured Kelvin foam‐based EM wave absorber (KF‐EMA) is reported that exhibits multifunctionality, namely EM wave absorption and light‐weighted load‐bearing structures with constant relative stiffness made possible using bending‐dominated lattice structures. Based on tuning design parameters, such as the backbone structures and constituent materials, the proposed KF‐EMA features a multilayered 3D‐printed design with geometrically optimized KF structures made of carbon black‐based backbone composites. The developed KF‐EMA demonstrated an absorbance greater than 90% at frequencies ranging from 5.8 to 18 GHz (average EM wave absorption rates of 95.89% and maximum of 99.1% at 15.8 GHz), while the low‐density structures of the absorber (≈200 kg m−3) still maintained a compression index between the stiffness and relative density (n = 2) under compression. The design strategy paves the way for using metamaterials as mechanically reinforced EM wave absorbers that enable multifunctionality by optimizing unit‐cell parameters through a single and low‐density structure.

Funder

Alfred P. Sloan Foundation

Agency for Defense Development

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3