Aromatic Zipper Topology Dictates Water‐Responsive Actuation in Phenylalanine‐Based Crystals

Author:

Sheehan Fahmeed K.123,Wang Haozhen14,Podbevšek Darjan1,Naranjo Elma15,Rivera‐Cancel Janel12,Moran Cooper3,Ulijn Rein V.123ORCID,Chen Xi1245ORCID

Affiliation:

1. Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York 85 St. Nicholas Terrace New York NY 10031 USA

2. Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA

3. Department of Chemistry Hunter College 695 Park Ave New York NY 10065 USA

4. Ph.D. Program in Physics The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA

5. Department of Chemical Engineering The City College of New York 275 Convent Ave New York NY 10031 USA

Abstract

AbstractWater‐responsive (WR) materials that reversibly deform in response to relative humidity (RH) changes are gaining increasing interest for their potential in energy harvesting and soft robotics applications. Despite progress, there are significant gaps in the understanding of how supramolecular structure underpins the reconfiguration and performance of WR materials. Here, three crystals are compared based on the amino acid phenylalanine (F) that contain water channels and F packing domains that are either layered (F), continuously connected (phenylalanyl‐phenylalanine, FF), or isolated (histidyl‐tyrosyl‐phenylalanine, HYF). Hydration‐induced reconfiguration is analyzed through changes in hydrogen‐bond interactions and aromatic zipper topology. F crystals show the greatest WR deformation (WR energy density of 19.8 MJ m−3) followed by HYF (6.5 MJ m−3), while FF exhibits no observable response. The difference in water‐responsiveness strongly correlates to the deformability of aromatic regions, with FF crystals being too stiff to deform, whereas HYF is too soft to efficiently transfer water tension to external loads.  These findings reveal aromatic topology design rules for WR crystals and provide insight into general mechanisms of high‐performance WR actuation. Moreover, the best‐performing crystal, F emerges as an efficient WR material for applications at scale and low cost.

Funder

Army Research Office

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3