Affiliation:
1. Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 China
2. Pillar of Engineering Product Development Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
3. Henan International Joint Laboratory of MXene Materials Microstructure College of Physics and Electronic Engineering Nanyang Normal University Nanyang 473061 China
4. Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan Hubei 430074 China
Abstract
AbstractDeveloping efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large‐scale water electrolysis. Herein, a unique 3D self‐branched hierarchical nanostructure composed of ultra‐small cobalt phosphide (CoP) nanoparticles embedded into N, P‐codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization‐phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm−2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm−2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non‐noble‐metal catalysts for energy‐conversion reactions.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献