Magnetic Torque‐Driven All‐Terrain Microrobots

Author:

Wang Qiong1,Zhang Zhuhua1,Wu Yuhua1,Li Bingyan1,Li Yuchong2,Gu Hongcheng1ORCID,Gu Zhongze1ORCID

Affiliation:

1. State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

2. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

Abstract

AbstractAll‐terrain microrobots possess significant potential in modern medical applications due to their superior maneuverability in complex terrains and confined spaces. However, conventional microrobots often struggle with adaptability and operational difficulties in variable environments. This study introduces a magnetic torque‐driven all‐terrain multiped microrobot (MTMR) to address these challenges. By coupling the structure's multiple symmetries with different uniform magnetic fields, such as rotating and oscillating fields, the MTMR demonstrates various locomotion modes, including rolling, tumbling, walking, jumping, and their combinations. Experimental results indicate that the robot can navigate diverse terrains, including flat surfaces, steep slopes (up to 75°), and gaps over twice its body height. Additionally, the MTMR performs well in confined spaces, capable of passing through slits (0.1 body length) and low tunnels (0.25 body length). The robot shows potential for clinical applications like minimally invasive hemostasis in internal bleeding and thrombus removal from blood vessels through accurate cargo manipulation capability. Moreover, the MTMR can carry temperature sensors to monitor environmental temperature changes in real time while simultaneously manipulating objects, displaying its potential for in‐situ sensing and parallel task implementation. This all‐terrain microrobot technology demonstrates notable adaptability and versatility, providing a solid foundation for practical applications in interventional medicine.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3