Nano‐Confined Effect and Heterojunction Promoted Exciton Separation for Light‐Boosted Osmotic Energy Conversion

Author:

Geng Yutong1ORCID,Zhang Liangqian1,Li Mengjie1,He Youfeng1,Lu Bingxin1,He Jianwei1,Li Xuejiang1,Zhou Hangjian1,Fan Xia1ORCID,Xiao Tianliang2,Zhai Jin1

Affiliation:

1. Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China

2. Hebei Key Laboratory of Applied Chemistry Hebei Key Laboratory of Nano‐Biotechnology School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China

Abstract

AbstractThe osmotic energy conversion properties of biomimetic light‐stimulated nanochannels have aroused great interest. However, the power output performance is limited by the low light‐induced current and energy conversion efficiency. Here, nanochannel arrays with simultaneous modification of ZnO and di‐tetrabutylammonium cis‐bis(isothiocyanato)bis(2,20‐bipyridyl‐4,40‐dicarboxylato) ruthenium (II) (N719) onto anodic aluminum oxide (AAO) to combine the nano‐confined effect and heterojunction is designed, which demonstrate rectified ion transport behavior due to the asymmetric composition, structure and charge. High cation selectivity and ion flux contribute to the high power density of ≈7.33 W m−2 by mixing artificial seawater and river water. Under light irradiation, heterojunction promoted the production and separation of exciton, enhanced cation selectivity, and improved the utilization efficiency of osmotic energy, providing a remarkable power density of ≈18.49 W m−2 with an increase of 252% and total energy conversion efficiency of 30.43%. The work opens new insights into the biomimetic nanochannels for high‐performance energy conversion.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3