Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster‐Microparticles for Flow Batteries

Author:

Moghaddam Mahdi1ORCID,Godeffroy Louis2,Jasielec Jerzy J.13ORCID,Kostopoulos Nikolaos2ORCID,Noël Jean‐Marc2ORCID,Piquemal Jean‐Yves2ORCID,Lemineur Jean‐François2ORCID,Peljo Pekka1ORCID,Kanoufi Frédéric2ORCID

Affiliation:

1. Research Group of Battery Materials and Technologies Department of Mechanical and Materials Engineering Faculty of Technology University of Turku Turun Yliopisto 20014 Finland

2. Université Paris Cité CNRS ITODYS Paris F‐75013 France

3. Department of Physical Chemistry and Modelling Faculty of Materials Science and Ceramics AGH University of Science and Technology Al. Mickiewicza 30 Kraków 30‐059 Poland

Abstract

AbstractUnderstanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global‐scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub‐particle resolution allows the mapping of local conversion rates and state‐of‐charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.

Funder

Suomen Kulttuurirahasto

Suomalainen Tiedeakatemia

European Research Council

Research Council of Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3