Ultralow‐Energy‐Consumption Photosynaptic Transistor Utilizing Conjugated Polymers/Perovskite Quantum Dots Nanocomposites With Ligand Density Optimization

Author:

Tsai Cheng‐Hang1,Chen Wei‐Cheng23,Lin Yan‐Cheng34,Huang Yu‐Hang1,Lin Kai‐Wei1,Wu Jing‐Yang1,Satoh Toshifumi56,Chen Wen‐Chang23,Kuo Chi‐Ching13ORCID

Affiliation:

1. Department of Molecular Science and Engineering Institute of Organic and Polymeric Materials National Taipei University of Technology Taipei 10608 Taiwan

2. Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan

3. Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan

4. Department of Chemical Engineering National Cheng Kung University Tainan 70101 Taiwan

5. Faculty of Engineering Hokkaido University Sapporo 060‐8628 Japan

6. List Sustainable Digital Transformation Catalyst Collaboration Research Platform (ICReDD List‐PF) Institute for Chemical Reaction Design and Discovery Hokkaido University Sapporo 001‐0021 Japan

Abstract

AbstractThe photosynaptic transistor stands as a promising contender for overcoming the von Neumann bottleneck in the realm of photo‐communication. In this context, photonic synaptic transistors is developed through a straightforward solution process, employing an organic semiconducting polymer with pendant‐naphthalene‐containing side chains (PDPPNA) in combination with ligand‐density‐engineered CsPbBr3 perovskite quantum dots (PQDs). This fabrication approach allows the devices to emulate fundamental synaptic behaviors, encompassing excitatory postsynaptic current, paired‐pulse facilitation, the transition from short‐to‐long‐term memory, and the concept of “learning experience.” Notably, the phototransistor, incorporating the blend of the PDPPNA and CsPbBr3 PQDs washed with ethyl acetate, achieved an exceptional memory ratio of 104. Simultaneously, the same device exhibited an impressive paired‐pulse facilitation ratio of 223% at a moderate operating voltage of −4 V and an extraordinarily low energy consumption of 0.215 aJ at an ultralow operating voltage of −0.1 mV. Consequently, these low‐voltage synaptic devices, constructed with a pendant side‐chain engineering of organic semiconductors and a ligand density engineering of PQDs through a simple fabrication process, exhibit substantial potential for replicating the visual memory capabilities of the human brain.

Funder

Ministry of Education

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3