Rapid Conversion from Alloy Nanoparticles to Oxide Nanowires: Strain Wave‐Driven Ru‐O‐Mn Collaborative Catalysis for Durable Oxygen Evolution Reaction

Author:

Xiao Mingyue1,Liu Jingjun1ORCID,Li Rongchao1,Sun Yanhui1,Liu Feng2,Gan Jun2,Gao Shixin2

Affiliation:

1. Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 China

2. Yunnan Precious Metals Laboratory Kunming 650100 China

Abstract

AbstractMetal‐doped ruthenium oxides with low prices have gained widespread attention due to their editable compositions, distorted structures, and diverse morphologies for electrocatalysis. However, the mainstream challenge lies in breaking the so‐called seesaw relationship between activity and stability during acidic oxygen evolution reaction (OER). Herein, strain wave‐featured Mn‐RuO2 nanowires (NWs) with asymmetric Ru‐O‐Mn bonds are first fabricated by thermally driven rapid solid phase conversion from RuMn alloy nanoparticles (NPs) at moderate temperature (450 °C). In 0.5 M H2SO4, the resultant NWs display a surprisingly ultralow overpotential of 168 mV at 10 mA cm–2 and run at a stable cell voltage (1.67 V) for 150 h at 50 mA cm–2 in PEMWE, far exceeding IrO2||Pt/C assemble. The simultaneous enhancement of both activity and stability stems from the presence of dense strain waves composed of alternating compressive and tensile ones in the distorted NWs, which collaboratively activate the Ru‐O‐Mn sites for faster OER. More importantly, the atomic strain waves trigger dynamic Ru‐O‐Mn regeneration via the refilling of oxygen vacancies by oxyanions adsorbed on adjacent Mn and Ru sites, achieving long‐term stability. This work opens a door to designing non‐precious metal‐assisted ruthenium oxides with unique strains for practical application in commercial PEMWE.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3