Mechanical Efficiency of Photochromic Nanomotors, From First Principles

Author:

Shirodkar Sharmila N.1,Su Tonghui1,Gupta Nitant1,Penev Evgeni S.1,Yakobson Boris I.12ORCID

Affiliation:

1. Department of Materials Science and NanoEngineering Rice University Houston TX 77005 USA

2. Department of Chemistry Rice University Houston TX 77005 USA

Abstract

AbstractPhotochromic molecular motors hold promise for a multitude of potential applications in fields ranging from medicine to communications and structural repair. Yet, it is still a challenge to predict their mechanical efficiency. Here, azobenzene is explored as a representative light‐driven nanomotor and estimate its quantum yield of photoisomerization and maximum mechanical efficiency. This is based on first‐principles mapping of the 3D potential energy surfaces for the ground and excited states of the trans and cis configurations and identifying the minimum energy pathway for isomerization. A work cycle is devised and identifies force constant as the parameter that resembles temperature in the Carnot heat engine, but with very different efficiencies. The results show that the optomechanical efficiency of azobenzene at constant load is about 5% albeit under ideal conditions. To test the hypothesis, the study also explores the optomechanical efficiency of stilbene and 2‐butene and shows that their efficiency does not exceed 5%.

Funder

National Science Foundation

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3