Band Structure Optimized by Electron‐Acceptor Cations for Sensitive Perovskite Single Crystal Self‐Powered Photodetectors

Author:

Huang Yu‐Hua1,Wang Xu‐Dong1,Li Wen‐Guang1,Zou Su‐Yan1,Yang Xin1,Kuang Dai‐Bin1ORCID

Affiliation:

1. Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME Sun Yat‐Sen University Guangzhou 510275 China

Abstract

AbstractLow‐dimensional perovskites afford improved stability against moisture, heat, and ionic migration. However, the low dimensionality typically results in a wide bandgap and strong electron–phonon coupling, which is undesirable for optoelectronic applications. Herein, semiconducting A‐site organic cation engineering by electron‐acceptor bipyridine (bpy) cations (2,2'‐bpy2+ and 4,4'‐bpy2+) is employed to optimize band structure in low‐dimensional perovskites. Benefiting from the merits of lower lowest unoccupied molecular orbital (LUMO) energy for 4,4'‐bpy2+ cation, the corresponding (4,4'‐bpy)PbI4 is endowed with a smaller bandgap (1.44 eV) than the (CH3NH3)PbI3 (1.57 eV) benchmark. Encouragingly, an intramolecular type II band alignment formation between inorganic Pb‐I octahedron anions and bpy2+ cations favors photogenerated electron–hole pairs separation. In addition, a shortening distance between inorganic Pb‐I octahedral chains in (4,4'‐bpy)PbI4 single crystal (SC) can effectively promote carrier transfer. As a result, a self‐powered photodetector based on (4,4'‐bpy)PbI4 SC exhibits 131 folds higher on/off ratio (3807) than the counterpart of (2,2'‐bpy)2Pb3I10 SC (29). The presented result provides an effective strategy for exporting novel organic cation‐based low‐dimensional perovskite SC for high‐performance optoelectronic devices.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3