Zn Anode Surviving Extremely Corrosive Polybromide Environment with Alginate‐Graphene Oxide Hydrogel Coating

Author:

Lin Shiyu1ORCID,Li Minghao2,Wang Guotao1,Wang Chao3,Yang Han1,Wang Zhoulu1,Zhang Yi1,Liu Xiang1,Bae Jinhye2456,Wu Yutong1ORCID

Affiliation:

1. School of Energy Sciences and Engineering Nanjing Tech University Nanjing Jiangsu 211816 China

2. Material Science and Engineering Program University of California San Diego La Jolla CA 92093 USA

3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China

4. Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA

5. Chemical Engineering Program University of California San Diego La Jolla CA 92093 USA

6. Sustainable Power and Energy Center (SPEC) University of California San Diego La Jolla CA 92093 USA

Abstract

AbstractZinc–bromine (Zn‐Br) redox provides a high energy density and low‐cost option for next‐generation energy storage systems, and polybromide diffusion remains a major issue leading to Zn anode corrosion, dendrite growth, battery self‐discharge and limited electrochemical performance. A dual‐functional Alginate‐Graphene Oxide (AGO) hydrogel coating is proposed to prevent polybromide corrosion and suppress dendrite growth in Zn–Br batteries through negatively charged carboxyl groups and enhanced mechanical properties. The battery with anode of plain zinc coated with AGO (Zn]AGO) survives a severely corrosive environment with higher polybromide concentration than usual without a membrane, and achieves 80 cycles with 100% Coulombic and 80.65% energy efficiencies, four times compared to plain Zn anode. The promising performance is comparable to typical Zn–Br batteries using physical membranes, and the AGO coating concept can be well adapted to various Zn–Br systems to promote their applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3