Synthesis of Cu2‐xSe‐MoSe2 Edge‐Epitaxial Heterostructure for Efficient Electrocatalytic Hydrogen Evolution

Author:

Ma Yanbo1,Yang Lei1,Li Ye1,Li Hai2,Huang Yanping3,Chen Junze1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

2. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 211816 China

3. Center of Engineering Experimental Teaching School of Chemical Engineering Sichuan University Chengdu 610065 China

Abstract

AbstractThe exposure of active edge sites of transition metal dichalcogenide (TMD) in TMD‐based heterostructures is essential to enhance the catalytic activity toward electrochemical catalytic hydrogen evolution (HER). The construction of TMD‐based edge‐epitaxial heterostructures can maximally expose the active edge sites. However, owing to the 2D crystal structures, it remains a great challenge to vertically align layered TMDs on non‐layered metal chalcogenides. Herein, the synthesis of Cu2‐xSe‐MoSe2 edge‐epitaxial heterostructure is reported by a facile one‐pot wet‐chemical method. A high density of MoSe2 nanosheets grown vertically to the <111>Cu2‐xSe on the surface of Cu2‐xSe nanocrystals is observed. Such edge‐epitaxial configuration allows the exposure of abundant active edge sites of MoSe2 and enhances the changer transfer between MoSe2 and Cu2‐xSe. As a result, the obtained Cu2‐xSe‐MoSe2 epitaxial heterostructures show excellent HER performance as compared to that of Cu2‐xSe@1T/2H‐MoSe2 core@shell heterostructure with similar size. This work not only offers a novel approach for designing efficient electrochemical catalysis but also enriches the diversity of TMD‐based heterostructures, holding promise for various applications in the future.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3