Antimicrobial and Antifouling Effects of Petal‐Like Nanostructure by Evaporation‐Induced Self‐Assembly for Personal Protective Equipment

Author:

Lee Dong Uk1ORCID,Jeong Sang Bin23ORCID,Lee Byeong Jin14,Park Se Kye1ORCID,Kim Hyoung‐Mi1,Shin Jae Hak3,Lee Seung Yeon3,Kim Gunwoo1,Park Junghun1ORCID,Kim Gyu Man4,Jung Jae Hee3ORCID,Choi Dong Yun1ORCID

Affiliation:

1. Biomedical Manufacturing Technology Center Korea Institute of Industrial Technology Yeongcheon 38822 Republic of Korea

2. Indoor Environment Center Korea Testing Laboratory Seoul 08389 Republic of Korea

3. Department of Mechanical Engineering Sejong University Seoul 05006 Republic of Korea

4. School of Mechanical Engineering Kyungpook National University Daegu 41566 Republic of Korea

Abstract

AbstractAlthough the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross‐infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen‐laden droplets are highly sought. In this study, petal‐like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation‐induced self‐assembly of octadecylamine, silica‐alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible‐light‐activated antimicrobial and superhydrophobic‐based antifouling activities. PNS‐coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen‐laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.

Funder

National Research Foundation of Korea

Korea Institute of Industrial Technology

Korea Institute of Machinery and Materials

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3