Graphene via Microwave Expansion of Graphite Followed by Cryo‐Quenching and its Application in Electrostatic Droplet Switching

Author:

Chahal Sumit12,Sahay Trisha1,Li Zhixuan3,Sharma Raju Kumar4,Kumari Ekta15,Bandyopadhyay Arkamita6,Kumari Puja1,Jyoti Ray Soumya1,Vinu Ajayan3ORCID,Kumar Prashant13

Affiliation:

1. Department of Physics Indian Institute of Technology Patna Bihta Campus Patna 801106 India

2. Indian Institute of Technology Hyderabad Kandi Hyderabad 502284 India

3. Global Innovative Centre for Advanced Nanomaterials (GICAN) University of Newcastle Callaghan 2308 Australia

4. Department of Mechanical Engineering Government Engineering College Sheohar Chhatauna Bisunpur, Block‐ Piprahi Sheohar Bihar 843329 India

5. Department of Metallurgical and Materials Engineering Indian Institute of Technology Patna Bihta Campus Patna 801106 India

6. Institut für Physik, Theoretische Physik Martin‐Luther‐Universität Halle‐Wittenber 06120 Halle Germany

Abstract

AbstractMonoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high‐purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few‐layered graphene sheets (200–12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ‐synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.

Funder

Mission on Nano Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3