An Organic–Inorganic Hydrogel with Exceptional Mechanical Properties via Anion‐Induced Synergistic Toughening for Accelerating Osteogenic Differentiation

Author:

Luo Hongmei1,Mu Qifeng2,Zhu Ruijie3,Li Min1,Shen Huanwei1,Lu Honglang1,Hu Longyu1,Tian Jiajun1,Cui Wei1ORCID,Ran Rong1ORCID

Affiliation:

1. College of Polymer Science and Engineering Sichuan University Chengdu 610065 China

2. RIKEN Center for Emergent Matter Science 2‐1 Hirosawa Wako Saitama 351‐0198 Japan

3. Faculty of Engineering Hokkaido University Sapporo 060–8628 Japan

Abstract

AbstractMineralized bio‐tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio‐tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting‐out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion‐sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m−2, and 2.98 kJ m−2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose‐derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3