Anchoring Ni(OH)2‐CeOx Heterostructure on FeOOH‐Modified Nickel‐Mesh for Efficient Alkaline Water‐Splitting Performance with Improved Stability under Quasi‐Industrial Conditions

Author:

Yaseen Waleed1,Xie Meng1,Yusuf Bashir Adegbemiga1,Meng Suci1,Khan Iltaf2,Xie Jimin13,Xu Yuanguo1ORCID

Affiliation:

1. School of Materials Science & Engineering School of Chemistry and Chemical Engineering School of Pharmacy Jiangsu University Zhenjiang 212013 P. R. China

2. School of Environmental & Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China

3. Jiangsu Jiangke Graphene Research Institure Co., LTD Jiangsu Jiangke Composite Material Co., LTD Nanjing 210094 P. R. China

Abstract

AbstractDeveloping low‐cost and industrially viable electrode materials for efficient water‐splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self‐supported porous network Ni(OH)2‐CeOx heterostructure layer on a FeOOH‐modified Ni‐mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two‐electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe0.05/Fe@NM catalyst reaches a current density of 100 mA cm−2 at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe0.05/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm−2. Under real water splitting conditions, NiCe0.05/Fe@NM requires only 1.701 V to achieve 100 mA cm−2 with robust stability over 1000 h in an alkaline medium. The remarkable water‐splitting performance and stability of the NiCe0.05/Fe@NM catalyst result from a synergistic combination of factors, including well‐optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two‐electrode electrodeposition method for the scalable production of self‐supported electrocatalysts, paving the way for their practical application in industrial water‐splitting processes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3