Strain Effects in Ru‐Au Bimetallic Aerogels Boost Electrocatalytic Hydrogen Evolution

Author:

Wei Wei12,Guo Fei1,Wang Cui2,Wang Lingwei3,Sheng Zhizhi4,Wu Xiaodong5,Cai Bin3ORCID,Eychmüller Alexander2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Public Experiment and Service Center Jiangsu University Xuefu Road 301 Zhenjiang 212013 China

2. Physical Chemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany

3. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China

4. Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 China

5. College of Materials Science and Engineering Nanjing Tech University Puzhu South Road 30 Nanjing 210009 China

Abstract

AbstractTo improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water‐splitting applications, there is an urgent desire to develop efficient, cost‐effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru‐Au bimetallic aerogels by a simple one‐step in situ reduction‐gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d‐band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm−2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.

Funder

China Scholarship Council

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3