Starch Gel Electrolyte and its Interaction with Trivalent Aluminum for Aqueous Aluminum‐Ion Batteries: Enhanced Low Temperature Electrochemical Performance

Author:

Ramakrishnan Saraswathi1,Sasirajan Little Flower Sajan Raj1,Hanamantrao Desai Prashant1,Kasiviswanathan Kavibharathy1,Sesu Divya Catherin2,Muthu Kesavan3,Elumalai Varathan4,Vediappan Kumaran1ORCID

Affiliation:

1. Electrochemical Energy Storage and Conversion Laboratory (EESCL) Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology (SRMIST) Kattankulathur Tamil Nadu 603203 India

2. The Department of Chemical Sciences Ariel University Ariel 4070000 Israel

3. Interdisciplinary Institute of Indian System of Medicine SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India

4. Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science, and Technology Kattankulathur Tamil Nadu 603203 India

Abstract

AbstractThis study explores trivalent Al interaction with aqueous starch gel in the presence of two different anions through salting effect. Salting‐out nature of Al2(SO4)3·18H2O with starch gel causes precipitation of starch; this happens due to competitive anion‐water complex formation over starch–water interaction, thereby reducing polymer solubility. Salting‐in effect of AlCl3 with starch gel happens through Al3+ cation interaction with hydroxyl group of starch and increases polymer solubility, making gel electrolyte viable for battery applications. Prepared gel electrolyte exhibits ionic conductivity of 1.59 mS cm−1 and a high tAl3+ value of 0.77. The gel electrolyte's performance is studied using two different cathodes, the Al|MoO3 cell employing starch gel electrolyte achieves discharge capacity of 193 mA h g−1 and Al|MnO2 cell achieves discharge capacity of 140 mA h g−1 @0.1 A g−1 for first cycle. The diffusion coefficient of both cells using starch gel electrolyte is calculated and found to be 2.1 × 10−11 cm2 s−1 for Al|MoO3 and 3.1 × 10−11 cm2 s−1 for Al|MnO2 cells. The Al|MoO3 cell at lower temperature shows improved electrochemical performance with a specific capacity retention of ≈87.8% over 90 cycles. This kind of aqueous gel electrolyte operating at low temperature broadens the application for next generation sustainable batteries.

Funder

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3