Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles

Author:

Schroter Alexandra1ORCID,Hirsch Thomas1ORCID

Affiliation:

1. Institute of Analytical Chemistry Chemo‐ and Biosensors University of Regensburg Universitaetsstraße 31 93053 Regensburg Germany

Abstract

AbstractNear‐infrared (NIR) light is highly suitable for studying biological systems due to its minimal scattering and lack of background fluorescence excitation, resulting in high signal‐to‐noise ratios. By combining NIR light with lanthanide‐based upconversion nanoparticles (UCNPs), upconversion is used to generate UV or visible light within tissue. This remarkable property has gained significant research interest over the past two decades. Synthesis methods are developed to produce particles of various sizes, shapes, and complex core–shell architectures and new strategies are explored to optimize particle properties for specific bioapplications. The diverse photophysics of lanthanide ions offers extensive possibilities to tailor spectral characteristics by incorporating different ions and manipulating their arrangement within the nanocrystal. However, several challenges remain before UCNPs can be widely applied. Understanding the behavior of particle surfaces when exposed to complex biological environments is crucial. In applications where deep tissue penetration is required, such as photodynamic therapy and optogenetics, UCNPs show great potential as nanolamps. These nanoparticles can combine diagnostics and therapeutics in a minimally invasive, efficient manner, making them ideal upconversion probes. This article provides an overview of recent UCNP design trends, highlights past research achievements, and outlines potential future directions to bring upconversion research to the next level.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3