Affiliation:
1. College of Chemistry Jilin University Changchun 130012 P. R. China
2. State Key Laboratory of Fine Chemicals School of Chemical Engineering Liaoning Key Laboratory for Energy Materials and Chemical Engineering PSU‐DUT Joint Center for Energy Research Dalian University of Technology Dalian 116024 P. R. China
3. State Key Laboratory of Chemical Resource Engineering College of Chemical Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
Abstract
AbstractBiomass‐based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass‐loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass‐loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass‐loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass‐loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass‐loading BPC electrodes in the future are discussed and outlined.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献