Precise Pore Engineering of fcu‐Type Y‐MOFs for One‐Step C2H4 Purification from Ternary C2H6/C2H4/C2H2 Mixtures

Author:

Liu Jiaqi1,Zhou Kang1,Ullah Saif2,Miao Jiafeng1,Wang Hao1ORCID,Thonhauser Timo2,Li Jing13

Affiliation:

1. Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Boulevard Shenzhen Guangdong 518055 P. R. China

2. Department of Physics and Center for Functional Materials Wake Forest University Winston‐Salem NC 27109 USA

3. Department of Chemistry and Chemical Biology Rutgers University 123 Bevier Road Piscataway NJ 08854 USA

Abstract

AbstractThe purification of C2H4 from C2H6/C2H4/C2H2 mixtures is of great significance in the chemical industry for C2H4 production but remains a daunting task. Guided by powerful reticular chemistry principles, herein a systematic study is carried out to engineer pore dimensions and pore functionality of fcu‐type Y‐based metal–organic frameworks (Y‐MOFs) through the construction of a series of eight new structures using linear dicarboxylate linkers with different length and functional groups. This study illustrates how delicate changes in pore size and pore surface chemistry can effectively influence the adsorption preference of C2H6, C2H4, and C2H2 by the MOFs. Importantly, clear relations between pore size/pore surface polarity and C2 adsorption selectivities of this series of MOFs are established. In particular, HIAM‐326 built on a linker decorated with trifluoromethoxy group shows notably preferential adsorption of C2H6 and C2H2 over C2H4, with balanced C2H2/C2H4 and C2H6/C2H4 selectivities. This endows the compound with the capability of one‐step purification of C2H4 from C2H6/C2H4/C2H2 ternary mixtures, which is validated by breakthrough measurements where high purity C2H4 (99.9%+) can be obtained directly from the separation column. Its adsorption thermodynamics and underlying selective adsorption mechanisms are further revealed by ab initio calculations.

Funder

China Postdoctoral Science Foundation

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3