A Room‐Temperature Self‐Healing Liquid Metal‐Infilled Microcapsule Driven by Coaxial Flow Focusing for High‐Performance Lithium‐Ion Battery Anode

Author:

Lin Xirong1,Chen An1,Yang Chaoyu2,Mu Kai2,Han Tianli3,Si Ting2,Li Jinjin1,Liu Jinyun3ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Micro/Nano Fabrication Key Laboratory for Thin Film and Microfabrication of Ministry of Education Department of Micro/Nano‐electronics Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. Department of Modern Mechanics University of Science and Technology of China Hefei Anhui 230026 P. R. China

3. Key Laboratory of Functional Molecular Solids of Ministry of Education Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 P. R. China

Abstract

AbstractLiquid metals have attracted a lot of attention as self‐healing materials in many fields. However, their applications in secondary batteries are challenged by electrode failure and side reactions due to the drastic volume changes during the “liquid‐solid‐liquid” transition. Herein, a simple encapsulated, mass‐producible method is developed to prepare room‐temperature liquid metal‐infilled microcapsules (LMMs) with highly conductive carbon shells as anodes for lithium‐ion batteries. Due to the reasonably designed voids in the microcapsule, the liquid metal particles (LMPs) can expand freely without damaging the electrode structure. The LMMs‐based anodes exhibit superior capacity of rete‐performance and ultra‐long cycling stability remaining 413 mAh g−1 after 5000 cycles at 5.0 A g−1. Ex situ X‐ray powder diffraction (XRD) patterns and electrochemical impedance spectroscopy (EIS) reveal that the LMMs anode displays a stable alloying/de‐alloying mechanism. DFT calculations validate the electronic structure and stability of the room‐temperature LMMs system. These findings will bring some new opportunities to develop high‐performance battery systems.

Funder

Key Research and Development Program of Wuhu

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3