Nitrogen‐Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc‐Ion Batteries

Author:

Song Tian‐Bing1,Huang Zun‐Hui1,Zhang Xi‐Rong1,Ni Jia‐Wen1,Xiong Huan‐Ming1ORCID

Affiliation:

1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China

Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) using the Zn metal anode have been considered as one of the next‐generation commercial batteries with high security, robust capacity, and low price. However, parasitic reactions, notorious dendrites and limited lifespan still hamper their practical applications. Herein, an eco‐friendly nitrogen‐doped and sulfonated carbon dots (NSCDs) is designed as a multifunctional additive for the cheap aqueous ZnSO4 electrolyte, which can overcome the above difficulties effectively. The abundant polar groups (‐COOH, ‐OH, ‐NH2, and ‐SO3H) on the CDs surfaces can regulate the solvation structure of Zn2+ through decreasing the coordinated active H2O molecules, and thus redistribute Zn2+ deposition to avoid side reactions. Some of the negatively charged NSCDs are adsorbed on Zn anode surface to isolate the H2O/SO42‐ corrosion through the electrostatic shielding effect. The synergistic effect of the doped nitrogen species and the surface sulfonic groups can induce a uniform electrolyte flux and a homogeneous Zn plating with a (002) texture. As a result, the excellent cycle life (4000 h) and Coulombic efficiency (99.5%) of the optimized ZIBs are realized in typical ZnSO4 electrolytes with only 0.1 mg mL‐1 of NSCDs additive.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3