Transdermal Microneedles Alleviated Rheumatoid Arthritis by Inducing Immune Tolerance via Skin‐Resident Antigen Presenting Cells

Author:

Zhao Yuanhao1,Chen Xiaoyan1,He Penghui1,Wang Xuanyu1,Xu Yanhua1,Hu Rui1,Ou Yangsen1,Zhang Zhihua2,Zhang Zhibing2,Du Guangsheng1,Sun Xun1ORCID

Affiliation:

1. Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China

2. School of Chemical Engineering University of Birmingham Edgbaston Birmingham B15 2TT UK

Abstract

AbstractRestoring immune tolerance is the ultimate goal for rheumatoid arthritis (RA) treatment. The most reported oral or intravenous injection routes for the immunization of autoantigens cause gastrointestinal side effects, low patient compliance, and unsatisfied immune tolerance induction. Herein, the use of a transdermal microneedle patch is for the first time investigated to codeliver CII peptide autoantigen and rapamycin for reversing immune disorders of RA. The immunized microneedles efficiently recruit antigen‐presenting cells particularly Langerhans cells, and induce tolerogenic dendritic cells at the administration skin site. The tolerogenic dendritic cells further homing to lymph nodes to activate systemic Treg cell differentiation, which upregulates the expression of anti‐inflammatory mediators while inhibiting the polarization of Th1/2 and Th17 T cell phenotypes and the expression of inflammatory profiles. As a result, the optimized microneedles nearly completely eliminate RA symptoms and inflammatory infiltrations. Furthermore, it is demonstrated that a low dose of rapamycin is crucial for the successful induction of immune tolerance. The results indicate that a rationally designed microneedle patch is a promising strategy for immune balance restoration with increased immune tolerance induction efficiency and patient compliance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System

Postdoctoral Research Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3