Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution

Author:

Zhang Hui1,Liu Jiabin2,Besteiro Lucas V.3,Selopal Gurpreet S.24,Zhao Zhenhuan1,Sun Shuhui2,Rosei Federico2ORCID

Affiliation:

1. School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 P. R. China

2. Institut National de la Recherche Scientifique Centre Énergie Matériaux Télécommunications 1650 Boulevard Lionel‐Boulet Varennes Québec J3X 1P7 Canada

3. CINBIO Universidade de Vigo Vigo 36310 Spain

4. Department of Engineering Faculty of Agriculture Dalhousie University Truro NS B2N 5E3 Canada

Abstract

AbstractSemiconductor core/shell quantum dots (QDs) are considered promising building blocks to fabricate photoelectrochemical (PEC) cells for the direct conversion of solar energy into hydrogen (H2). However, the lattice mismatch between core and shell in such QDs results in undesirable defects and severe carrier recombination, limiting photo‐induced carrier separation/transfer and solar‐to‐fuel conversion efficiency. Here, an interface engineering approach is explored to minimize the core‐shell lattice mismatch in CdS/CdSexS1‐x (x = 0.09–1) core/shell QDs (g‐CSG). As a proof‐of‐concept, PEC cells based on g‐CSG QDs yield a remarkable photocurrent density of 13.1 mA cm−2 under AM 1.5 G one‐sun illumination (100 mW cm−2), which is ≈54.1% and ≈33.7% higher compared to that in CdS/CdSe0.5S0.5 (g‐CSA) and CdS/CdSe QDs (g‐CS), respectively. Theoretical calculations and carrier dynamics confirm more efficient carrier separation and charge transfer rate in g‐CSG QDs with respect to g‐CSA and g‐CS QDs. These results are attributed to the minimization of the core‐shell lattice mismatch by the cascade gradient shell in g‐CSG QDs, which modifies carrier confinement potential and reduces interfacial defects. This work provides fundamental insights into the interface engineering of core/shell QDs and may open up new avenues to boost the performance of PEC cells for H2 evolution and other QDs‐based optoelectronic devices.

Funder

Canada Foundation for Innovation

Canada Research Chairs

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3