Single‐Layer Hexagonal Boron Nitride Nanopores as High‐Performance Ionic Gradient Power Generators

Author:

Liu Ting‐Ran1,Fung Man Yui Thomas2,Yeh Li‐Hsien23ORCID,Chiang Chun‐Hao1ORCID,Yang Jhih‐Sian4,Kuo Pai‐Chia5,Shiue Jessie5,Chen Chia‐Chun45,Chen Chun‐Wei167ORCID

Affiliation:

1. Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan

2. Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan

3. Advanced Manufacturing Research Center National Taiwan University of Science and Technology Taipei 10607 Taiwan

4. Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan

5. Institute of Atomic and Molecular Science Academia Sinica Taipei 10617 Taiwan

6. Center of Condensed Matter Science National Taiwan University Taipei 10617 Taiwan

7. Center of Atomic Initiative for New Materials (AI‐MAT) National Taiwan University Taipei 10617 Taiwan

Abstract

AbstractAtomically thin two‐dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single‐layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high‐performance ion‐gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis‐driven proton‐gradient power up to ≈3 nW under 1000‐fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid‐base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single‐layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3