Utilization of Additive Manufacturing Techniques for the Development of a Novel Scaffolds with Magnetic Properties for Potential Application in Enhanced Bone Regeneration

Author:

Orozco‐Osorio Yeison Alejandro1ORCID,Gaita‐Anturi Angela Victoria2,Ossa‐Orozco Claudia Patricia2,Arias‐Acevedo María3,Uribe Diego3,Paucar Carlos1,Vasquez Andres Felipe4,Saldarriaga Wilmer1,Ramirez Juan Gabriel5,Lopera Alex6,García Claudia1ORCID

Affiliation:

1. Universidad Nacional de Colombia sede Medellín Carrera 65 # 59A‐100 Medellin Antioquia 050034 Colombia

2. Universidad de Antioquia Calle 70 # 52‐21, 1226 Medellín 050010 Colombia

3. Instituto Tecnológico Metropolitano Calle 73 #76A‐354, Campus Robledo Medellín Antioquia 50034 Colombia

4. New Stetic Cra. 53 #50‐09 Guarne Antioquia 054050 Colombia

5. Universidad de los Andes Bogotá Colombia

6. Grupo de Nanoestructuras y Física Aplicada (NANOUPAR) Universidad Nacional de Colombia La Paz 202017 Colombia

Abstract

AbstractThis study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3