Low‐Potential Iodide Oxidation Enables Dual‐Atom CoFe─N─C Catalysts for Ultra‐Stable and High‐Energy‐Efficiency Zn–Air Batteries

Author:

Fan Hong‐Shuang1,Liang Xiongyi2ORCID,Ma Fei‐Xiang1ORCID,Zhang Guobin3,Liu Zheng‐Qi1,Zhen Liang14,Zeng Xiao Cheng2ORCID,Xu Cheng‐Yan14ORCID

Affiliation:

1. Sauvage Laboratory for Smart Materials School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China

2. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong 999077 China

3. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

4. MOE Key Laboratory of Micro‐Systems and Micro‐Structures Manufacturing Harbin Institute of Technology Harbin 150080 China

Abstract

AbstractThe low energy efficiency and limited cycling life of rechargeable Zn–air batteries (ZABs) arising from the sluggish oxygen reduction/evolution reactions (ORR/OERs) severely hinder their commercial deployment. Herein, a zeolitic imidazolate framework (ZIF)‐derived strategy associated with subsequent thermal fixing treatment is proposed to fabricate dual‐atom CoFe─N─C nanorods (Co1Fe1─N─C NRs) containing atomically dispersed bimetallic Co/Fe sites, which can promote the energy efficiency and cyclability of ZABs simultaneously by introducing the low‐potential oxidation redox reactions. Compared to the mono‐metallic nanorods, Co1Fe1─N─C NRs exhibit remarkable ORR performance including a positive half‐wave potential of 0.933 V versus reversible hydrogen electrode (RHE) in alkaline electrolyte. Surprisingly, after introducing the potassium iodide (KI) additive, the oxidation overpotential of Co1Fe1─N─C NRs to reach 10 mA cm−2 can be significantly reduced by 395 mV compared to the conventional destructive OER. Theoretical calculations show that the markedly decreased overpotential of iodide oxidation can be ascribed to the synergistic effects of neighboring Co─Fe diatomic sites as the unique adsorption sites. Overall, aqueous ZABs assembled with Co1Fe1─N─C NRs and KI as the air–cathode catalyst and electrolyte additive, respectively, can deliver a low charging voltage of 1.76 V and ultralong cycling stability of over 230 h with a high energy efficiency of ≈68%.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3