Affiliation:
1. National and Local United Engineering Laboratory for Power Batteries College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 P. R. China
2. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
Abstract
AbstractIt remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献