Pulsed Electrolysis Promotes CO2 Reduction to Ethanol on Heterostructured Cu2O/Ag Catalysts

Author:

Wu Xiuju1,Li Xiaotong1,Lv Jiabao2,Lv Xiangzhou1,Wu Angjian2,Qi Zhifu3,Wu Hao Bin1ORCID

Affiliation:

1. Institute for Composites Science Innovation (InCSI) State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

2. State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China

3. Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou Zhejiang 311121 China

Abstract

AbstractThe electrochemical conversion of carbon dioxide (CO2) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu2O/Ag interfaces for ethanol production under pulsed CO2 electrolysis is reported, which is composed of Cu2O hollow nanospheres loaded with Ag nanoparticles (named as se‐Cu2O/Ag). The CO2‐to‐ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm−2 under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu+ species of se‐Cu2O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (*CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu2O/Ag heterostructure stabilizes the *CO intermediate and promotes the coupling of *CO and adsorbed CH intermediate (*CH). Meanwhile, the stable Cu+ species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (*HCCOH) to adsorbed HCCHOH intermediate (*HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of *CO on Cu2O/Ag and regenerated Cu+ species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO2 electroreduction via combined catalyst design and non‐steady state electrolysis.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3