In Situ Raman Study of Surface Reconstruction of FeOOH/Ni3S2 Oxygen Evolution Reaction Electrocatalysts

Author:

Chen Mengxin1,Zhang Yuanyuan2,Chen Ji1,Wang Ran3,Zhang Bin1,Song Bo3,Xu Ping1

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. Key Laboratory for Photonic and Electronic Bandgap Materials Harbin Normal University Harbin 150025 P. R. China

3. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150001 P. R. China

Abstract

AbstractConstruction of heterojunctions is an effective strategy to enhanced electrocatalytic oxygen evolution reaction (OER), but the structural evolution of the active phases and synergistic mechanism still lack in‐depth understanding. Here, an FeOOH/Ni3S2 heterostructure supported on nickel foam (NF) through a two‐step hydrothermal‐chemical etching method is reported. In situ Raman spectroscopy study of the surface reconstruction behaviors of FeOOH/Ni3S2/NF indicates that Ni3S2 can be rapidly converted to NiOOH, accompanied by the phase transition from α‐FeOOH to β‐FeOOH during the OER process. Importantly, a deep analysis of Ni─O bond reveals that the phase transition of FeOOH can regulate the lattice disorder of NiOOH for improved catalytic activity. Density functional theory (DFT) calculations further confirm that NiOOH/FeOOH heterostructure possess strengthened adsorption for O‐containing intermediates, as well as lower energy barrier toward the OER. As a result, FeOOH/Ni3S2/NF exhibits promising OER activity and stability in alkaline conditions, requiring an overpotential of 268 mV @ 100 mA cm−2 and long‐term stability over 200 h at a current density of 200 mA cm−2. This work provides a new perspective for understanding the synergistic mechanism of heterogeneous electrocatalysts during the OER process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3