Strain‐Regulated Pt–NiO@Ni Sub‐Micron Particles Achieving Bifunctional Electrocatalysis for Zinc–Air Battery

Author:

Zhang Fan123,Ji Renjie4,Zhu Xiaoyang123ORCID,Li Hongke123,Wang Yating4,Wang Jingpeng123,Wang Fei123,Lan Hongbo123

Affiliation:

1. Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong Qingdao University of Technology Qingdao 266520 P. R. China

2. Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology Qingdao 266520 P. R. China

3. Key Lab of Industrial Fluid Energy Conservation and Pollution Control Ministry of Education Qingdao 266520 P. R. China

4. College of Mechanical and Electronic Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China

Abstract

AbstractHighly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have always been the key factors to affect the performance of zinc–air batteries. However, integrating the independent reaction sites of ORR and OER in a catalyst remains a major challenge. Herein, a collaborative strategy based on defect induction and doping is proposed to prepare the strain‐regulated Pt–NiO@Ni sub‐micron particles (Pt–NiO@Ni SP). Benefiting from the synergistic effect of tensile strain and Pt‐doped, the metallic Ni‐based sub‐micron particles with tensile strain as the catalyst carriers can effectively optimize the electronic distribution of atomic structures in Pt and NiO on the surface of particles, leading to reduce the energy barrier of intermediates for ORR and OER. Consequently, the Pt–NiO@Ni SP exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V under a low Pt loading, outperforming that of the benchmark Pt/C+IrO2 catalysts (0.76 V). Impressively, the Pt–NiO@Ni SP‐based liquid zinc–air battery develops a high open‐circuit potential (1.47 V), excellent energy density (188.2 mW cm−2), and favorable cyclic charge–discharge cycling durability (200 h at 20 mA cm−2). This work provides an innovative avenue for the rational construction of highly active bifunctional electrocatalysts for practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3