SOx Functionalized NiOOH Nanosheets Embedded in Ni(OH)2 Microarray for High‐Efficiency Seawater Oxidation

Author:

Haq Tanveer ul1ORCID,Arooj Mahreen1,Tahir Aleena2,Haik Yousef34ORCID

Affiliation:

1. Department of Chemistry College of Sciences University of Sharjah Sharjah 27272 UAE

2. Department of Chemistry & Chemical Engineering SBA School of Science & Engineering Lahore University of Management Sciences (LUMS) Lahore 54792 Pakistan

3. Department of Mechanical and Nuclear Engineering College of Engineering University of Sharjah Sharjah 27272 UAE

4. Department of Mechanical Engineering The University of Jordan Amman 11942 Jordan

Abstract

AbstractA nano‐micro heterostructure has been established to address the challenges of selectivity, stress, pitting corrosion, and long‐term durability of anodes in unpurified seawater. The heterostructure comprised NiOOH nanosheets embedded within a high surface area Ni(OH)2 microarray, and the surface structure is further functionalized with sulfate (SOx). This cation‐selective protective layer impedes chloride (Cl) diffusion and abstracts H from reaction intermediates, leading to enhanced selectivity and corrosion resistance of the anode. The multilevel porosity within the randomly oriented nanosheets and the underlying support provide short diffusion channels for ions and mass migration, ensuring efficient ion transport and long‐term structural and mechanical durability of the active sites, even at high current density. Remarkably, the catalyst requires a small input voltage of 400 mV to deliver a current density of 1 A cm−2 and maintains it for over 168 h without noticeable degradation or hypochlorite formation. Spectroscopic analysis and density functional theory (DFT) calculations reveal that the Ni electronic structure in the +3 valence state, its strong structural interaction with the underlying microarray, and the functionality of SOx significantly reduce the required potential for O–O coupling.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3