Microfluidic Continuous Synthesis of Size‐ and Facet‐Controlled Porous Bi2O3 Nanospheres for Efficient CO2 to Formate Catalysis

Author:

Han Zhenze1,Chang Yuan2,Gao Jiaxuan1,Liu Taolue1,Li Jialuo1,Liu Jinxuan1,Liu Jiaxu1,Gao Yan1,Gao Junfeng2ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering Dalian University of Technology Dalian 116024 China

2. Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education Dalian University of Technology Dalian 116024 China

Abstract

AbstractBismuth‐based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth‐based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large‐scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3‐FDCA material. First‐principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5‐furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3‐FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large‐scale synthesis of finely structured, efficient bismuth‐based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3