Interface Engineering Induced Electron Redistribution at PtNs/NiTe‐Ns Interfaces for Promoting pH‐Universal and Chloride‐Tolerant Hydrogen Evolution Reaction

Author:

Sun Huachuan1,Chen Mingpeng1,Xiao Bin1,Zhou Tong1,Humayun Muhammad2,Li Linfeng3,Lu Qingjie1,He Tianwei1,Zhang Jin1,Bououdina Mohammed2,Wang Chundong3,Liu Qingju1ORCID

Affiliation:

1. National Center for International Research on Photoelectric and Energy Materials Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University Kunming 650091 China

2. Energy, Water, and Environment Lab, College of Humanities and Sciences Prince Sultan University Riyadh 11586 Saudi Arabia

3. School of Integrated Circuits Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractExploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large‐scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs/NiTe‐Ns). The as‐prepared PtNs/NiTe‐Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm−2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe‐Ns subtly modulates the electronic redistribution at their interface, improves the charge‐transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs/NiTe‐Ns promotes the sluggish water‐dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs/NiTe‐Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3