Affiliation:
1. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072 China
2. Xi'an Key Laboratory of Functional Organic Porous Materials Northwestern Polytechnical University Xi'an 710129 China
3. Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation Sunresins New Materials Co. Ltd. Xi'an 710072 China
Abstract
AbstractThis work reports on the preparation of uniform vesicle‐structural carbon spheres doped with heteroatoms of N, P, and S, with the pore sizes strictly controlled by the hard templates of monodisperse submicron SiO2 spheres. The uniformly doped vesicular carbon microspheres are obtained in three steps: Stöber hydrolysis for the SiO2; in situ polymerization for the immobilization; and alkaline etching after carbonization. The size of the vesicles can be easily adjusted by regulating the particle size of the submicron SiO2 spheres, which has a significant effect on its electromagnetic wave (EMW) absorption performance. Compared with microspheres with pore sizes of 180 and 480 nm, when the vesicle aperture is 327 nm, with only 5.5 wt.% filling load and 1.9 mm thickness, the material shows the best EMW absorption behavior with the effective absorption bandwidth (EAB) covers the entire Ku band (6.32 GHz) and the minimum reflection loss (RLmin) of −36.10 dB, suggesting the optimized pore size of the microspheres can significantly improve the overall impedance matching of the material and achieve broadband wave absorption. This work paves the way for the enhancement of EMW absorption properties of porous material by optimizing the pore size of uniform apertures while maintaining their composition.
Funder
Natural Science Foundation of Chongqing
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献