Multifunctionally Reusing Waste Solder to Prepare Highly Efficient Sn–Pb Perovskite Solar Cells

Author:

Chen Chang1,Duan Chenghao1,Zou Feilin1,Li Jiong1,Yan Keyou1ORCID

Affiliation:

1. School of Environment and Energy State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology Guangzhou 510000 China

Abstract

AbstractThe preparation of perovskite components (PbI2 and SnI2) using waste materials is of great significance for the commercialization of perovskite solar cells (PSCs). However, this goal is difficult to achieve due to the purity of the recovered products and the easy oxidation of Sn2+. Here, a simple one‐step synthetic process to convert waste Sn–Pb solder into SnI2/PbI2 and then applied as‐prepared SnI2/PbI2 to PSCs for high additional value is adopted. During fabrication, Sn–Pb waste solder is also employed to serve as a reducing agent to reduce the Sn4+ in Sn–Pb mixed narrow perovskite precursor and hence remove the deep trap states in perovskite. The target PSCs achieved an efficiency of 21.04%, which is better than the efficiency of the device with commercial SnI2/PbI2 (20.10%). Meanwhile, the target PSC maintained an initial efficiency of 80% even after 800 h under continuous illumination, which is significantly better than commercial devices. In addition, the method achieved a recovery rate of 90.12% for Sn–Pb waste solder, with a lab‐grade purity (over 99.8%) for SnI2/PbI2, and the cost of perovskite active layer reduced to 39.81% through this recycling strategy through calculation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3