Ultralow‐Overpotential Acidic Oxygen Evolution Reaction Over Bismuth Telluride–Carbon Nanotube Heterostructure with Organic Framework

Author:

Arbab Alvira Ayoub1ORCID,Cho Sehyeon2,Jung Euibeen2,Han Hyun Soo34,Park Sangwook567,Lee Hyoungsoon12ORCID

Affiliation:

1. School of Mechanical Engineering Chung‐Ang University Seoul 06974 South Korea

2. Department of Intelligent Energy and Industry Chung‐Ang University Seoul 06974 South Korea

3. Department of Mechanical Engineering Stanford University Stanford CA 94305 USA

4. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

5. Department of Mechanical Engineering Seoul National University Seoul 08826 South Korea

6. Institute of Advanced Machines and Design Seoul National University Seoul 08826 South Korea

7. Institute of Engineering Research Seoul National University Seoul 08826 South Korea

Abstract

AbstractThe state‐of‐the‐art iridium and ruthenium oxides‐based materials are best known for high efficiency and stability in acidic oxygen evolution reaction (OER). However, the development of economically feasible catalysts for water‐splitting technologies is challenging by the requirements of low overpotential, high stability, and resistance of catalysts to dissolution during the acidic oxygen evolution reaction . Herein, an organometallic core–shell heterostructure composed of a carbon nanotube core (CNT) and bismuth telluride (Bi2Te3) shell (denoted as nC–Bi2Te3) is designed and use it as a catalyst for the acidic OER. The proposed catalyst achieves an ultralow overpotential of 160 mV at 10 mA cm−2 (geometrical), thereby outperforming most of the state‐of‐the‐art precious‐metal‐based catalysts. The low Tafel slope of 30 mV dec−1 and charge transfer resistance (RCT) of 1.5 Ω demonstrate its excellent electrocatalytic activity. The morphological and chemical compositions of nC–Bi2Te3 enable the generation of ─OH functional group in the Bi─Te sections formed via a ligand support, which enhances the absorption capacity of H+ ions and increases the intrinsic catalytic activity. The presented insights regarding the material composition–structure relationship can help expand the application scope of high‐performance catalysts.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3